学术活动

当前位置: 首页 > 科学研究 > 学术活动 > 正文

【融实论坛】香港城市大学冯冠豪副教授讲座通知

来源: | 发布时间:2024-07-01| 点击:

北航经管学院融实论坛系列讲座

2024年第7期,总第64期)


讲座题目:Growing the Efficient Frontier on Panel Trees

讲座时间:2024.7.8(周14:30-16:00

讲座嘉宾:冯冠豪 教授

讲座形式:线下新主楼 A1148

主持人:部慧 副教授

讲座嘉宾 简介

冯冠豪博士目前是香港城市大学商学院统计副教授,他于2017年从芝加哥大学布斯商学院获得博士学位。冯冠豪博士专注于开发新的实证方法,包括机器学习、贝叶斯统计和金融计量,以解决实证资产定价中的大数据问题。他的研究成果已发表在Journal of Finance, Journal of Financial and Quantitative Analysis, Journal of Econometrics, International Economic Review等期刊上。冯教授同时主持多项研究基金,包括香港研究资助局的ECSGRF基金,以及国家自然科学青年科学家基金。他的研究得到金融业界的认可,包括INQUIRE Europe和香港货币金融研究所的研究奖项,还有AQR Insight Award


讲座概要

Estimating the efficient frontier using individual stock returns is a long-standing empirical challenge. We develop a new class of tree-based models (P-Trees) for analyzing (unbalanced) panel data, which grows top-down to split the cross section of asset returns for constructing characteristics-managed test assets and recovering the stochastic discount factor under the global criteria of mean-variance efficiency. When applied to U.S. equities, boosted (multi-factor) P-Trees significantly advance the efficient frontier relative to those constructed with commonly used factors and test assets. Second, P-Tree test assets are diversified and exhibit significant unexplained alphas against benchmark models. Third, the unified P-Tree factors outperform popular observable and latent factor models in pricing cross-sectional returns and generating substantial investment gains. Finally, an over-parameterized Random P-Forest model delivers an exceptional out-of-sample Sharpe ratio, revealing the complexity of panel stock returns. Beyond asset pricing, our framework offers a sparse, interpretable, and computationally efficient alternative to recent machine learning and AI models for analyzing panel data through goal-oriented clustering.